32-2 to 32-6 Particle Interactions, Particle Exchange

(I) How much energy is released in the decay

$$\pi^+ \rightarrow \mu^+ + \nu_{\mu}$$
?

See Table 32-2.

- 16. (I) About how much energy is released when a Λ^0 decays to n + π^0 ? (See Table 32–2.)
- 17. (I) How much energy is required to produce a neutronantineutron pair?
- 18. (I) Estimate the range of the strong force if the mediating particle were the kaon instead of the pion.
- 19. (II) Two protons are heading toward each other with equal speeds. What minimum kinetic energy must each have if a π^0 meson is to be created in the process? (See Table 32-2.)
- 20. (II) What minimum kinetic energy must two neutrons each have if they are traveling at the same speed toward each other, collide, and produce a K+K-pair in addition to themselves? (See Table 32-2.)
- 21. (II) Estimate the range of the weak force using Eq. 32-3, given the masses of the W and Z particles as about 80 to 90 GeV/c2.
- 22. (II) What are the wavelengths of the two photons produced when a proton and antiproton at rest annihilate?
- 23. (II) The Λ cannot decay by the following reactions. What conservation law is violated in each of the reactions?
 - (a) $\Lambda^0 \rightarrow n + \pi$
 - (b) $\Lambda^0 \rightarrow p + K^-$
 - (c) $\Lambda^0 \rightarrow \pi^+ + \pi$
- 24. (II) For the decay $\Lambda^0 \to p + \pi^-$, calculate (a) the Q-value (energy released), and (b) the kinetic energy of the p and π^- , assuming the Λ^0 decays from rest. (Use relativistic formulas.)
- 25. (II) (a) Show, by conserving momentum and energy, that it is impossible for an isolated electron to radiate only a single photon. (b) With this result in mind, how can you defend the photon exchange diagram in Fig. 32-7?
- 26. (II) What would be the wavelengths of the two photons produced when an electron and a positron, each with 420 keV of kinetic energy, annihilate head on?
- 27. (II) In the rare decay $\pi^+ \rightarrow e^+ + \nu_e$, what is the kinetic energy of the positron? Assume the π^+ decays from
- 28. (II) Which of the following reactions and decays are possible? For those forbidden, explain what laws are violated.
 - (a) $\pi^- + p \rightarrow n + \eta^0$
 - (b) $\pi^{+} + p \rightarrow n + \pi^{0}$
 - (c) $\pi^+ + p \rightarrow p + e^+$
 - (d) p \rightarrow e⁺ + ν_e
 - (e) $\mu^+ \rightarrow e^+ + \bar{\nu}_{\mu}$
 - (f) $p \rightarrow n + e^+ + \nu_e$

- 29. (II) Calculate the kinetic energy of each of the two products in the decay $\Xi^- \to \Lambda^0 + \pi^-$. Assume the Ξ^- decays
- 30. (III) Could a π^+ meson be produced if a 100-MeV proton struck a proton at rest? What minimum kinetic energy must the incoming proton have?
- 31. (III) Calculate the maximum kinetic energy of the electron in the decay $\mu^- \rightarrow e^- + \bar{\nu}_e + \nu_\mu$. [Hint: in what direction do the two neutrinos move relative to the electron in order to give the latter the maximum kinetic energy? Both energy and momentum are conserved; use relativistic formulas.]

32-7 to 32-11 Resonances, Standard Model, Quarks, QCD, GUT

- 32. (I) Use Fig. 32–11 to estimate the energy width and then the lifetime of the Δ resonance using the uncertainty principle.
- 33. (I) The measured width of the J/ψ meson is 88 keV. Estimate its lifetime.
- (I) The measured width of the ψ (3685) meson is 277 keV. Estimate its lifetime.
- 35. (I) What is the energy width (or uncertainty) of (a) η^0 , and (b) Σ^0 ? See Table 32–2.
- (I) The B⁻ meson is a bu quark combination. (a) Show that this is consistent for all quantum numbers. (b) What are the quark combinations for B^+ , B^0 , \overline{B}^0 ?
- 37. (II) Which of the following decays are possible? For those that are forbidden, explain which laws are violated.
 - (a) $\Xi^0 \rightarrow \Sigma^+ + \pi^-$
 - (b) $\Omega^- \rightarrow \Sigma^0 + \pi^- + \nu$
 - (c) $\Sigma^0 \rightarrow \Lambda^0 + \gamma + \gamma$
- 38. (II) What are the quark combinations that can form (a) a neutron, (b) an antineutron, (c) a Λ⁰, (d) a Σ̄⁰?
- 39. (II) What particles do the following quark combinations produce: (a) uud, (b) $\overline{u}\overline{u}\overline{s}$, (c) $\overline{u}s$, (d) $d\overline{u}$, (e) $\overline{c}s$?
- (II) What is the quark combination needed to produce a D^0 meson (Q = B = S = 0, c = +1)?
- **41.** (II) The D_S^+ meson has S = c = +1, B = 0. What quark combination would produce it?
- 42. (II) Draw a possible Feynman diagram using quarks (as in Fig. 32–13c) for the reaction $\pi^- + p \rightarrow \pi^0 + n$.
- 43. (II) Draw a Feynman diagram for the reaction $n + \nu_{\mu} \rightarrow p + \mu^{-}$.