- 32. (II) Show that the energies carried off by the ⁴₂He nucleus and the neutron for the reaction of Eq. 31–8c are about 3.5 MeV and 14 MeV, respectively. Are these fixed values, independent of the plasma temperature?
- 33. (II) Suppose a fusion reactor ran on "d-d" reactions, Eqs. 31-8a and b. Estimate how much water, for fuel, would be needed per hour to run a 1000-MW reactor, assuming 30% efficiency.
- 34. (III) How much energy (J) is contained in 1.00 kg of water if its natural deuterium is used in the fusion reaction of Eq. 31-8a? Compare to the energy obtained from the burning of 1.0 kg of gasoline, about 5 × 10⁷ J.
- 35. (III) The energy output of massive stars is believed to be due to the *carbon cycle* (see text). (a) Show that no carbon is consumed in this cycle and that the net effect is the same as for the proton-proton cycle. (b) What is the total energy release? (c) Determine the energy output for each reaction and decay. (d) Why does the carbon cycle require a higher temperature (≈2 × 10⁷ K) than the proton-proton cycle (≈1.5 × 10⁷ K)?
- 36. (III) (a) Compare the energy needed for the first reaction of the carbon cycle to that for a deuterium—tritium reaction (Example 31–9). (b) If a deuterium—tritium reaction requires T≈ 3 × 10⁸ K, estimate the temperature needed for the first carbon-cycle reaction.

31-5 Dosimetry

- 37. (I) A dose of 4.0 Sv of γ rays in a short period would be lethal to about half the people subjected to it. How many grays is this?
- 38. (I) Fifty rads of α-particle radiation is equivalent to how many rads of X-rays in terms of biological damage?
- 39. (I) How many rads of slow neutrons will do as much biological damage as 75 rads of fast neutrons?
- 40. (I) How much energy is deposited in the body of a 65-kg adult exposed to a 2.0-Gy dose?
- 41. (II) A 0.025-μCi sample of ³²₁₅P is injected into an animal for tracer studies. If a Geiger counter intercepts 25% of the emitted β particles, what will be the counting rate, assumed 85% efficient?
- 42. (II) A cancer patient is undergoing radiation therapy in which protons with an energy of 1.2 MeV are incident on a 0.25-kg tumor. (a) If the patient receives an effective dose of 1.0 rem, what is the absorbed dose? (b) How many protons are absorbed by the tumor? Assume QF ≈ 1.

- 43. (II) A 1.0-mCi source of ³²₁₅P (in NaHPO₄), a β emitter, is implanted in a tumor where it is to administer 36 Gy. The half-life of ³²₁₅P is 14.3 days, and 1 mCi delivers about 10 mGy/min. Approximately how long should the source remain implanted?
- 44. (II) About 35 eV is required to produce one ion pair in air. Show that this is consistent with the two definitions of the roentgen given in the text.
- 45. (II) ⁵⁷/₂₇Co emits 122-keV γ rays. If a 70-kg person swallowed 1.85 μCi of ⁵⁷/₂₇Co, what would be the dose rate (Gy/day) averaged over the whole body? Assume that 50% of the γ-ray energy is deposited in the body. [Hint: determine the rate of energy deposited in the body and use the definition of the gray.]
- 46. (II) What is the mass of a 1.00-μCi ¹⁴₆C source?
- 47. (II) Huge amounts of radioactive ¹³/₅₃I were released in the accident at Chernobyl in 1986. Chemically, iodine goes to the human thyroid. (Doctors can use it for diagnosis and treatment of thyroid problems.) In a normal thyroid, ¹³/₅₃I absorption can cause damage to the thyroid. (a) Write down the reaction for the decay of ¹³¹/₅₃I. (b) Its half-life is 8.0 d; how long would it take for ingested ¹³¹/₅₃I to become 10% of the initial value? (c) Absorbing 1 mCi of ¹³¹/₅₃I can be harmful; what mass of iodine is this?
- 48. (III) Assume a liter of milk typically has an activity of 2000 pCi due to ¹⁰/₁₀K. If a person drinks two glasses (0.5 L) per day, estimate the total effective dose (in Sv and in rem) received in a year. As a crude model, assume the milk stays in the stomach 12 hr and is then released. Assume also that very roughly 10% of the 1.5 MeV released per decay is absorbed by the body. Compare your result to the normal allowed dose of 100 mrem per year. Make your estimate for (a) a 50-kg adult, and (b) a 5-kg baby.
- 49. (III) Radon gas, ²²²₈₆Rn, is considered a serious health hazard (see discussion in text). It decays by α-emission. (a) What is the daughter nucleus? (b) Is the daughter nucleus stable or radioactive? If the latter, how does it decay, and what is its half-life? (c) Is the daughter nucleus also a noble gas, or is it chemically reacting? (d) Suppose 1.0 ng of ²²²₈₆Rn seeps into a basement. What will be its activity? If the basement is then sealed, what will be the activity 1 month later? [Hint: see Fig. 30–11.]

31-9 NMR

50. (II) Calculate the wavelength of photons needed to produce NMR transitions in free protons in a 1.000-T field. In what region of the spectrum does it lie?

General Problems

- 51. J. Chadwick discovered the neutron by bombarding ⁴Be with the popular projectile of the day, alpha particles.
 (a) If one of the reaction products was the then unknown neutron, what was the other product? (b) What is the Q-value of this reaction?
- 52. Fusion temperatures are often given in keV. Determine the conversion factor from kelvins to keV using, as is common in this field, $\overline{\text{KE}} = kT$ without the factor $\frac{3}{2}$.
- 53. One means of enriching uranium is by diffusion of the gas UF₆. Calculate the ratio of the speeds of molecules of this gas containing ²³⁵/₉₂U and ²³⁸/₉₂U, on which this process depends.
- 54. (a) What mass of ²³⁵₉₂U was actually fissioned in the first atomic bomb, whose energy was the equivalent of about 20 kilotons of TNT (1 kiloton of TNT releases 5 × 10¹² J)? (b) What was the actual mass transformed to energy?
- 55. In a certain town the average yearly background radiation consists of 21 mrad of X-rays and γ rays plus 3.0 mrad of particles having a QF of 10. How many rem will a person receive per year on the average?
- 56. Deuterium makes up 0.0115% of natural hydrogen on average. Make a rough estimate of the total deuterium in the Earth's oceans and estimate the total energy released if all of it were used in fusion reactors.