84. Two rock climbers, Bill and Karen, use safety ropes of similar length. Karen's rope is more elastic, called a dynamic rope by climbers. Bill has a static rope, not recommended for safety purposes in pro climbing. Karen falls freely about 2.0 m and then the rope stops her over a distance of 1.0 m (Fig. 4-63). (a) Estimate, assuming that the force is constant, how large a force she will feel from the rope. (Express the result in multiples of her weight.) (b) In a similar fall, Bill's rope stretches by 30 cm only. How many times his weight will the rope pull on him? Which climber is more likely to be hurt?

FIGURE 4-63 Problem 84.

85. A fisherman in a boat is using a "10-lb test" fishing line. This means that the line can exert a force of 45 N without breaking (1 lb = 4.45 N). (a) How heavy a fish can the fisherman land if he pulls the fish up vertically at constant speed? (b) If he accelerates the fish upward at 2.0 m/s2, what maximum weight fish can he land? (c) Is it possible to land a 15-lb trout on 10-lb test line? Why or why not?

- 86. An elevator in a tall building is allowed to reach a maximum speed of 3.5 m/s going down. What must the tension be in the cable to stop this elevator over a distance of 2.6 m if the elevator has a mass of 1300 kg including
- 87. Two boxes, $m_1 = 1.0 \,\mathrm{kg}$ with a coefficient of kinetic friction of 0.10, and $m_2 = 2.0 \,\mathrm{kg}$ with a coefficient of 0.20, are placed on a plane inclined at $\theta = 30^{\circ}$. (a) What acceleration does each box experience? (b) If a taut string is connected to the boxes (Fig. 4-64), with m_2 initially farther down the slope, what is the acceleration of each box? (c) If the initial configuration is reversed with m_1 starting lower with a taut string, what is the acceleration of each box?

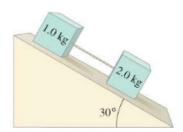


FIGURE 4-64 Problem 87.

- 88. A 75.0-kg person stands on a scale in an elevator. What does the scale read (in N and in kg) when the elevator is (a) at rest, (b) ascending at a constant speed of 3.0 m/s, (c) falling at 3.0 m/s, (d) accelerating upward at 3.0 m/s², (e) accelerating downward at 3.0 m/s²?
- 89. Three mountain climbers who are roped together are ascending an icefield inclined at 21.0° to the horizontal. The last climber slips, pulling the second climber off his feet. The first climber is able to hold them both. If each climber has a mass of 75 kg, calculate the tension in each of the two sections of rope between the three climbers. Ignore friction between the ice and the fallen climbers.

Answers to Exercises

- A: (a) The same; (b) the sports car; (c) third law for part (a), second law for part (b).
- B: The force applied by the person is insufficient to keep the box moving.
- C: No; yes.
- D: Yes; no.