* 23-10 Lensmaker's Equation

A useful equation, known as the **lensmaker's equation**, relates the focal length of a lens to the radii of curvature R_1 and R_2 of its two surfaces and its index of refraction n:

Lensmaker's equation

$$\frac{1}{f} = (n-1)\left(\frac{1}{R_1} + \frac{1}{R_2}\right). \tag{23-10}$$

If both surfaces are convex, R_1 and R_2 are considered positive. For a concave surface, the radius must be considered *negative*.

Notice that Eq. 23–10 is symmetrical in R_1 and R_2 . Thus, if a lens is turned around so that light impinges on the other surface, the focal length is the same even if the two lens surfaces are different.

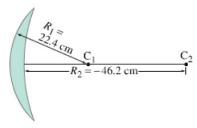


FIGURE 23-43 Example 23-14.

EXAMPLE 23–14 Calculating f for a converging lens. A convex meniscus lens (Figs. 23–29a and 23–43) is made from glass with n = 1.50. The radius of curvature of the convex surface is 22.4 cm, and that of the concave surface is 46.2 cm. What is the focal length?

APPROACH We use the lensmaker's equation, Eq. 23–10, to find f. **SOLUTION** $R_1 = 22.4 \, \text{cm}$ and $R_2 = -46.2 \, \text{cm}$ (concave surface). Then

$$\frac{1}{f} = (1.50 - 1.00) \left(\frac{1}{22.4 \,\mathrm{cm}} - \frac{1}{46.2 \,\mathrm{cm}} \right) = 0.0115 \,\mathrm{cm}^{-1}.$$

Sc

$$f = \frac{1}{0.0115 \,\mathrm{cm}^{-1}} = 87 \,\mathrm{cm},$$

and the lens is converging since f > 0.

NOTE If we turn the lens around so that $R_1 = -46.2$ cm and $R_2 = +22.4$ cm, we get the same result.

 † Some books use a different convention—for example, R_1 and R_2 are considered positive if their centers of curvature are to the right of the lens, in which case a minus sign replaces the + sign in their equivalent of Eq. 23–10.

Summary

Light appears to travel in straight-line paths, called **rays**, at a speed v that depends on the **index of refraction**, n, of the material; that is

$$n = \frac{c}{2},\tag{23-4}$$

where c is the speed of light in vacuum.

When light reflects from a flat surface, the angle of reflection equals the angle of incidence. This law of reflection explains why mirrors can form images.

In a **plane mirror**, the image is virtual, upright, the same size as the object, and is as far behind the mirror as the object is in front.

A spherical mirror can be concave or convex. A concave spherical mirror focuses parallel rays of light (light from a very distant object) to a point called the focal point. The distance of this point from the mirror is the focal length f of the mirror and

$$f = \frac{r}{2}, \tag{23-1}$$

where r is the radius of curvature of the mirror.

Parallel rays falling on a **convex mirror** reflect from the mirror as if they diverged from a common point behind the mirror. The distance of this point from the mirror is the focal length and is considered negative for a convex mirror.

For a given object, the approximate position and size of the image formed by a mirror can be found by ray tracing. Algebraically, the relation between image and object distances, d_i and d_o , and the focal length f, is given by the **mirror equation:**

$$\frac{1}{d_0} + \frac{1}{d_1} = \frac{1}{f}.$$
 (23–2)

The ratio of image height h_i to object height h_o , which equals the magnification m of a mirror, is

$$m = \frac{h_i}{h_o} = -\frac{d_i}{d_o}.$$
 (23-3)

If the rays that converge to form an image actually pass through the image, so the image would appear on film or a screen placed there, the image is said to be a **real image**. If the light rays do not actually pass through the image, the image is a **virtual image**.