

Figure 3.21 (a) Vector addition by the triangle method. (b) Vector addition by the parallelogram rule.

SUMMARY

Scalar quantities are those that have only magnitude and no associated direction. **Vector quantities** have both magnitude and direction and obey the laws of vector addition.

We can add two vectors \mathbf{A} and \mathbf{B} graphically, using either the triangle method or the parallelogram rule. In the triangle method (Fig. 3.21a), the resultant vector $\mathbf{R} = \mathbf{A} + \mathbf{B}$ runs from the tail of \mathbf{A} to the tip of \mathbf{B} . In the parallelogram method (Fig. 3.21b), \mathbf{R} is the diagonal of a parallelogram having \mathbf{A} and \mathbf{B} as two of its sides. You should be able to add or subtract vectors, using these graphical methods.

The x component A_x of the vector **A** is equal to the projection of **A** along the x axis of a coordinate system, as shown in Figure 3.22, where $A_x = A \cos \theta$. The y component A_y of **A** is the projection of **A** along the y axis, where $A_y = A \sin \theta$. Be sure you can determine which trigonometric functions you should use in all situations, especially when θ is defined as something other than the counterclockwise angle from the positive x axis.

If a vector **A** has an x component A_x and a y component A_y , the vector can be expressed in unit-vector form as $\mathbf{A} = A_x \mathbf{i} + A_y \mathbf{j}$. In this notation, \mathbf{i} is a unit vector pointing in the positive x direction, and \mathbf{j} is a unit vector pointing in the positive y direction. Because \mathbf{i} and \mathbf{j} are unit vectors, $|\mathbf{i}| = |\mathbf{j}| = 1$.

We can find the resultant of two or more vectors by resolving all vectors into their x and y components, adding their resultant x and y components, and then using the Pythagorean theorem to find the magnitude of the resultant vector. We can find the angle that the resultant vector makes with respect to the x axis by using a suitable trigonometric function.

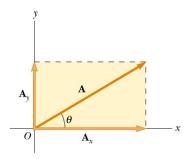


Figure 3.22 The addition of the two vectors \mathbf{A}_x and \mathbf{A}_y gives vector \mathbf{A} . Note that $\mathbf{A}_x = A_x \mathbf{i}$ and $\mathbf{A}_y = A_y \mathbf{j}$, where A_x and A_y are the *components* of vector \mathbf{A} .

QUESTIONS

- Two vectors have unequal magnitudes. Can their sum be zero? Explain.
- **2.** Can the magnitude of a particle's displacement be greater than the distance traveled? Explain.
- 3. The magnitudes of two vectors **A** and **B** are A = 5 units and B = 2 units. Find the largest and smallest values possible for the resultant vector $\mathbf{R} = \mathbf{A} + \mathbf{B}$.
- **4.** Vector **A** lies in the *xy* plane. For what orientations of vector **A** will both of its components be negative? For what orientations will its components have opposite signs?
- 5. If the component of vector **A** along the direction of vector

- **B** is zero, what can you conclude about these two vectors?
- **6.** Can the magnitude of a vector have a negative value? Explain.
- 7. Which of the following are vectors and which are not: force, temperature, volume, ratings of a television show, height, velocity, age?
- 8. Under what circumstances would a nonzero vector lying in the xy plane ever have components that are equal in magnitude?
- 9. Is it possible to add a vector quantity to a scalar quantity? Explain.