following properties:

• The electric field and the magnetic field each satisfy a wave equation. These two wave equations, which can be obtained from Maxwell's third and fourth equations, are

$$\frac{\partial^2 E}{\partial x^2} = \mu_0 \epsilon_0 \frac{\partial^2 E}{\partial t^2}$$
 (34.8)

$$\frac{\partial^2 B}{\partial x^2} = \mu_0 \epsilon_0 \frac{\partial^2 B}{\partial t^2}$$
 (34.9)

• The waves travel through a vacuum with the speed of light c, where

$$c = \frac{1}{\sqrt{\mu_0 \epsilon_0}} = 3.00 \times 10^8 \,\mathrm{m/s}$$
 (34.10)

- The electric and magnetic fields are perpendicular to each other and perpendicular to the direction of wave propagation. (Hence, electromagnetic waves are transverse waves.)
- The instantaneous magnitudes of **E** and **B** in an electromagnetic wave are related by the expression

$$\frac{E}{B} = c ag{34.13}$$

The waves carry energy. The rate of flow of energy crossing a unit area is described by the Poynting vector S, where

$$\mathbf{S} \equiv \frac{1}{\mu_0} \mathbf{E} \times \mathbf{B} \tag{34.18}$$

• They carry momentum and hence exert pressure on surfaces. If an electromagnetic wave whose Poynting vector is **S** is completely absorbed by a surface upon which it is normally incident, the radiation pressure on that surface is

$$P = \frac{S}{c}$$
 (complete absorption) (34.24)

If the surface totally reflects a normally incident wave, the pressure is doubled. The electric and magnetic fields of a sinusoidal plane electromagnetic wave propagating in the positive x direction can be written

$$E = E_{\text{max}} \cos(kx - \omega t) \tag{34.11}$$

$$B = B_{\text{max}} \cos(kx - \omega t) \tag{34.12}$$

where ω is the angular frequency of the wave and k is the angular wave number. These equations represent special solutions to the wave equations for E and B. Be-

QUESTIONS

- 1. For a given incident energy of an electromagnetic wave, why is the radiation pressure on a perfectly reflecting surface twice as great as that on a perfectly absorbing surface?
- 2. Describe the physical significance of the Poynting vector.
- **3.** Do all current-carrying conductors emit electromagnetic waves? Explain.
- 4. What is the fundamental cause of electromagnetic radiation?
- 5. Electrical engineers often speak of the radiation resistance of an antenna. What do you suppose they mean by this phrase?
- **6.** If a high-frequency current is passed through a solenoid containing a metallic core, the core warms up by induc-