Ouestions 1067

The **impedance** Z of an RLC series ac circuit, which also has the ohm as its unit, is

$$Z \equiv \sqrt{R^2 + (X_L - X_C)^2}$$
 (33.23)

This expression illustrates that we cannot simply add the resistance and reactances in a circuit. We must account for the fact that the applied voltage and current are out of phase, with the **phase angle** ϕ between the current and voltage being

$$\phi = \tan^{-1} \left(\frac{X_L - X_C}{R} \right) \tag{33.25}$$

The sign of ϕ can be positive or negative, depending on whether X_L is greater or less than X_C . The phase angle is zero when $X_L = X_C$.

The average power delivered by the generator in an RLC ac circuit is

$$\mathcal{P}_{\rm av} = I_{\rm rms} \, \Delta V_{\rm rms} \cos \phi \tag{33.29}$$

An equivalent expression for the average power is

$$\mathcal{P}_{\text{av}} = I_{\text{rms}}^2 R \tag{33.30}$$

The average power delivered by the generator results in increasing internal energy in the resistor. No power loss occurs in an ideal inductor or capacitor.

The rms current in a series *RLC* circuit is

$$I_{\rm rms} = \frac{\Delta V_{\rm rms}}{\sqrt{R^2 + (X_L - X_C)^2}}$$
 (33.32)

A series *RLC* circuit is in resonance when the inductive reactance equals the capacitive reactance. When this condition is met, the current given by Equation 33.32 reaches its maximum value. When $X_L = X_C$ in a circuit, the **resonance frequency** ω_0 of the circuit is

$$\omega_0 = \frac{1}{\sqrt{LC}} \tag{33.33}$$

The current in a series RLC circuit reaches its maximum value when the frequency of the generator equals ω_0 —that is, when the "driving" frequency matches the resonance frequency.

Transformers allow for easy changes in alternating voltage. Because energy (and therefore power) are conserved, we can write

$$I_1 \, \Delta V_1 = I_2 \, \Delta V_2 \tag{33.40}$$

to relate the currents and voltages in the primary and secondary windings of a transformer.

QUESTIONS

- 1. Fluorescent lights flicker on and off 120 times every second. Explain what causes this. Why can't you see it happening?
- 2. Why does a capacitor act as a short circuit at high frequencies? Why does it act as an open circuit at low frequencies?
- **3.** Explain how the acronyms in the mnemonic "ELI the ICE man" can be used to recall whether current leads voltage or voltage leads current in *RLC* circuits. (Note that "E" represents voltage.)
- **4.** Why is the sum of the maximum voltages across the elements in a series *RLC* circuit usually greater than the maximum applied voltage? Doesn't this violate Kirchhoff's second rule?
- **5.** Does the phase angle depend on frequency? What is the phase angle when the inductive reactance equals the capacitive reactance?
- **6.** Energy is delivered to a series *RLC* circuit by a generator. This energy appears as internal energy in the resistor. What is the source of this energy?