Summary 1033

Figure 32.21 (a) Charge versus time for a damped RLC circuit. The charge decays in this way when $R \ll \sqrt{4L/C}$. The Q-versus-t curve represents a plot of Equation 32.31. (b) Oscilloscope pattern showing the decay in the oscillations of an RLC circuit. The parameters used were $R=75~\Omega, L=10~\mathrm{mH},$ and $C=0.19~\mu\mathrm{F}.$

Figure 32.22 Plot of *Q* versus *t* for an overdamped *RLC* circuit, which occurs for values of $R > \sqrt{4L/C}$.

SUMMARY

When the current in a coil changes with time, an emf is induced in the coil according to Faraday's law. The **self-induced emf** is

$$\mathbf{\mathcal{E}}_{L} = -L \frac{dI}{dt} \tag{32.1}$$

where L is the **inductance** of the coil. Inductance is a measure of how much opposition an electrical device offers to a change in current passing through the device. Inductance has the SI unit of **henry** (H), where $1 \text{ H} = 1 \text{ V} \cdot \text{s/A}$.

The inductance of any coil is

$$L = \frac{N\Phi_B}{I}$$
 (32.2)

where Φ_B is the magnetic flux through the coil and N is the total number of turns. The inductance of a device depends on its geometry. For example, the inductance of an air-core solenoid is

$$L = \frac{\mu_0 N^2 A}{\ell} \tag{32.4}$$

where A is the cross-sectional area, and ℓ is the length of the solenoid.

If a resistor and inductor are connected in series to a battery of emf \mathcal{E} , and if a switch in the circuit is thrown closed at t = 0, then the current in the circuit varies in time according to the expression

$$I = \frac{\mathcal{E}}{R} (1 - e^{-t/\tau})$$
 (32.7)

where $\tau = L/R$ is the time constant of the RL circuit. That is, the current increases to an equilibrium value of \mathcal{E}/R after a time that is long compared with τ . If the battery in the circuit is replaced by a resistanceless wire, the current decays exponentially with time according to the expression

$$I = \frac{\mathcal{E}}{R} e^{-t/\tau} \tag{32.10}$$

where \mathcal{E}/R is the initial current in the circuit.