does not occur, physicists hypothesized a new conservation law, the conservation of **baryon number**. (Baryon number is a generalization of nucleon number, which we saw earlier is conserved in nuclear reactions and decays.) All nucleons are defined to have baryon number B = +1, and all antinucleons (antiprotons, antineutrons) have B = -1. All other types of particles, such as photons, mesons, and electrons and other leptons, have B = 0. The reaction shown at the start of this paragraph does not conserve baryon number since the left side has B = (+1) + (+1) = +2, and the right has B = (+1) + (+1) + (-1) = +1. On the other hand, the following reaction does conserve B and does occur if the incoming proton has sufficient energy:

$$p + p \rightarrow p + p + \overline{p} + p,$$

 $B = +1 + 1 = +1 + 1 - 1 + 1.$

As indicated, B = +2 on both sides of this equation. From these and other reactions, the **conservation of baryon number** has been established as a basic principle of physics.

Also useful are the conservation laws for the three **lepton numbers**, associated with weak interactions including decays. In ordinary β decay, an electron or positron is emitted along with a neutrino or antineutrino. In a similar type of decay, a particle known as a " μ " or mu meson, or **muon**, can be emitted instead of an electron. The muon (discovered in 1937) seems to be much like an electron, except its mass is 207 times larger (106 MeV/ c^2). The neutrino (ν_e) that accompanies an emitted electron is found to be different from the neutrino (ν_μ) that accompanies an emitted muon. Each of these neutrinos has an antiparticle: $\bar{\nu}_e$ and $\bar{\nu}_\mu$. In ordinary β decay we have, for example,

$$n \rightarrow p + e^- + \bar{\nu}_e$$

but not n \Rightarrow p + e⁻ + $\bar{\nu}_{\mu}$. To explain why these do not occur, the concept of **electron lepton number**, $L_{\rm e}$, was invented. If the electron (e⁻) and the electron neutrino ($\nu_{\rm e}$) are assigned $L_{\rm e}=+1$, and e⁺ and $\bar{\nu}_{\rm e}$ are assigned $L_{\rm e}=-1$, whereas all other particles have $L_{\rm e}=0$, then all observed decays conserve $L_{\rm e}$. For example, in n \rightarrow p + e⁻ + $\bar{\nu}_{\rm e}$, $L_{\rm e}=0$ initially, and $L_{\rm e}=0+(+1)+(-1)=0$ after the decay. Decays that do not conserve $L_{\rm e}$, even though they would obey the other conservation laws, are not observed to occur.

In a decay involving muons, such as

$$\pi^+ \rightarrow \mu^+ + \nu_\mu$$
,

a second quantum number, **muon lepton number** (L_{μ}) , is conserved. The μ^- and ν_{μ} are assigned $L_{\mu}=+1$, and μ^+ and $\bar{\nu}_{\mu}$ have $L_{\mu}=-1$, whereas other particles have $L_{\mu}=0$. L_{μ} too is conserved in interactions and decays. Similar assignments can be made for the **tau lepton number**, L_{τ} , associated with the τ lepton (discovered in 1976 with mass more than 3000 times the electron mass) and its neutrino, ν_{τ} .

Keep in mind that antiparticles have not only opposite electric charge from their particles, but also opposite B, L_e, L_μ , and L_τ . For example, a neutron has B=+1, an antineutron has B=-1 (and all the L's are zero).

Which of the following decay schemes is possible for muon decay: (a) $\mu^- \to e^- + \bar{\nu}_e$; (b) $\mu^- \to e^- + \bar{\nu}_e + \nu_\mu$; (c) $\mu^- \to e^- + \nu_e$? All of these particles have $L_\tau = 0$.

RESPONSE A μ^- has $L_\mu=+1$ and $L_{\rm e}=0$. This is the initial state, and the final state (after decay) must also have $L_\mu=+1$, $L_{\rm e}=0$. In (a), the final state has $L_\mu=0+0=0$, and $L_{\rm e}=+1-1=0$; L_μ would not be conserved and indeed this decay is not observed to occur. The final state of (b) has $L_\mu=0+0+1=+1$ and $L_{\rm e}=+1-1+0=0$, so both L_μ and $L_{\rm e}$ are conserved. This is in fact the most common decay mode of the μ^- . Finally, (c) does not occur because $L_{\rm e}$ (= +2 in the final state) is not conserved, nor is L_μ .

Baryon number

Conservation of baryon number

Lepton numbers

CAUTION

The different types of neutrinos are not identical

Lepton numbers conservation

Antiparticles have opposite Q, B, L