* Deriving the Half-Life Formula; Mean Life

We can derive Eq. 30-6 starting from Eq. 30-4 by setting $N = N_0/2$ at $t = T_{\frac{1}{2}}$:

$$\frac{N_0}{2} = N_0 e^{-\lambda T_{\frac{1}{2}}}$$

so

$$e^{\lambda T_{\frac{1}{2}}}=2.$$

We take natural logs of both sides ("ln" and "e" are inverse operations, meaning $\ln(e^x) = x$) and find

$$\ln\left(e^{\lambda T_{\frac{1}{2}}}\right) = \ln 2,$$

SO

$$\lambda T_{\frac{1}{2}} = \ln 2 = 0.693$$

and

$$T_{\frac{1}{2}} = \frac{\ln 2}{\lambda} = \frac{0.693}{\lambda},$$

which is Eq. 30-6.

You may find the *mean life* of an isotope quoted. The mean life τ is defined as $\tau = 1/\lambda$, so that Eq. 30–4 can written $N = N_0 e^{-t/\tau}$ just as for RC and LR circuits (Chapters 19 and 21) where τ is called the time constant. Then (see also Eq. 30–6)

$$\tau = \frac{1}{\lambda} = \frac{T_{\frac{1}{2}}}{0.693};$$

the mean life and half-life differ significantly in numerical value, so confusing them can cause serious error (and has).

30–9 Calculations Involving Decay Rates and Half-Life

Let us now consider Examples of what we can determine about a sample of radioactive material if we know the half-life.

EXAMPLE 30–9 Sample activity. The isotope ${}^{14}_{6}\text{C}$ has a half-life of 5730 yr. If at some time a sample contains 1.00×10^{22} carbon-14 nuclei, what is the activity of the sample?

APPROACH We first use the half-life to find the decay constant (Eq. 30–6), and use that to find the activity, Eq. 30–3b. The number of seconds in a year is $(60)(60)(24)(365\frac{1}{4}) = 3.156 \times 10^7 \text{ s}$.

SOLUTION The decay constant λ from Eq. 30–6 is

$$\lambda = \frac{0.693}{T_{\frac{1}{2}}} = \frac{0.693}{(5730\,\mathrm{yr})(3.156\times10^7\,\mathrm{s/yr})} = 3.83\times10^{-12}\,\mathrm{s^{-1}}.$$

From Eq. 30-3b, the magnitude of the activity or rate of decay is

$$\frac{\Delta N}{\Delta t} = \lambda N = (3.83 \times 10^{-12} \,\mathrm{s}^{-1})(1.00 \times 10^{22})$$
$$= 3.83 \times 10^{10} \,\mathrm{decays/s}.$$

Notice that the graph of Fig. 30–10b starts at this value, corresponding to the original value of $N = 1.0 \times 10^{22}$ nuclei in Fig. 30–10a.

NOTE The unit "decays/s" is often written simply as s^{-1} since "decays" is not a unit but refers only to the number. This simple unit of activity is called the becquerel: 1 Bq = 1 decay/s, as discussed in Chapter 31.

EXERCISE C Determine the decay constant for radium $(T_{\frac{1}{2}} = 1600 \text{ yr})$.