CONCEPTUAL EXAMPLE 28–3 Possible states for n = 3. How many different states are possible for an electron whose principal quantum number is n = 3?

RESPONSE For n=3, l can have the values l=2, 1, 0. For l=2, m_l can be 2, 1, 0, -1, -2, which is five different possibilities. For each of these, m_s can be either up or down $(+\frac{1}{2}$ or $-\frac{1}{2}$); so for l=2, there are $2\times 5=10$ states. For l=1, m_l can be 1, 0, -1, and since m_s can be $+\frac{1}{2}$ or $-\frac{1}{2}$ for each of these, we have 6 more possible states. Finally, for l=0, m_l can only be 0, and there are only 2 states corresponding to $m_s=+\frac{1}{2}$ and $-\frac{1}{2}$. The total number of states is 10+6+2=18, as detailed in the following Table:

n	I	m_l	m_s	n	I	m_{I}	m_s
3	2	2	1/2	3	1	1	1/2
3	2	2	$-\frac{1}{2}$	3	1	1	$-\frac{1}{2}$
3	2	1	$\frac{1}{2}$	3	1	0	$\frac{1}{2}$
3	2	1	$-\frac{1}{2}$	3	1	0	$-\frac{1}{2}$
3	2	0	$\frac{1}{2}$	3	1	-1	$\frac{1}{2}$
3	2	0	$-\frac{1}{2}$	3	1	-1	$-\frac{1}{2}$
3	2	-1	$\frac{1}{2}$	3	0	0	$\frac{1}{2}$
3	2	-1	$-\frac{1}{2}$	3	0	0	$-\frac{1}{2}$
3	2	-2	$\frac{1}{2}$				
3	2	-2	$-\frac{1}{2}$				

EXERCISE B An electron has n = 4, l = 2. Which of the following values of m_l are possible: 4, 3, 2, 1, 0, -1, -2, -3, -4?

EXAMPLE 28-4 E and L for n = 3. Determine (a) the energy and (b) the orbital angular momentum for an electron in each of the hydrogen atom states of Example 28-3.

APPROACH (a) The energy of a state depends only on n, except for the very small corrections mentioned above, which we will ignore. Energy is calculated as in the Bohr theory, $E_n = -13.6 \,\mathrm{eV}/n^2$. For angular momentum we use Eq. 28–3.

SOLUTION Since n = 3 for all these states, they all have the same energy,

$$E_3 = -\frac{13.6 \,\text{eV}}{(3)^2} = -1.51 \,\text{eV}.$$

(b) For l = 0, Eq. 28-3 gives

$$L = \sqrt{l(l+1)}\,\hbar = 0.$$

For l=1,

$$L = \sqrt{1(1+1)}\,\hbar = \sqrt{2}\,\hbar = 1.49 \times 10^{-34}\,\text{J}\cdot\text{s}.$$

For
$$l = 2$$
, $L = \sqrt{2(2+1)} \hbar = \sqrt{6} \hbar$.

NOTE Atomic angular momenta are generally given as a multiple of \hbar ($\sqrt{2}\hbar$ or $\sqrt{6}\hbar$ in this case), rather than in SI units.

EXERCISE C What are the energy and angular momentum of the electron in a hydrogen atom with n = 6, l = 4?

Although l and m_l do not significantly affect the energy levels in hydrogen, they do affect the electron probability distribution in space. For n = 1, l and m_l can only be zero and the electron distribution is as shown in Fig. 28–6.