But Newton realized that things are not so one-sided. True, the hammer exerts a force on the nail (Fig. 4–7). But the nail evidently exerts a force back on the hammer as well, for the hammer's speed is rapidly reduced to zero upon contact. Only a strong force could cause such a rapid deceleration of the hammer. Thus, said Newton, the two objects must be treated on an equal basis. The hammer exerts a force on the nail, and the nail exerts a force back on the hammer. This is the essence of **Newton's third law of motion**:

NEWTON'S THIRD LAW OF MOTION

Whenever one object exerts a force on a second object, the second exerts an equal force in the opposite direction on the first.

This law is sometimes paraphrased as "to every action there is an equal and opposite reaction." This is perfectly valid. But to avoid confusion, it is very important to remember that the "action" force and the "reaction" force are acting on *different* objects.

FIGURE 4-7 A hammer striking a nail. The hammer exerts a force on the nail and the nail exerts a force back on the hammer. The latter force decelerates the hammer and brings it to rest.

FIGURE 4-9 An example of Newton's third law: when an ice skater pushes against the wall, the wall pushes back and this force causes her to accelerate away.

Rocket acceleration

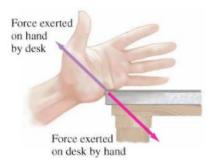


FIGURE 4-8 If your hand pushes against the edge of a desk (the force vector is shown in red), the desk pushes back against your hand (this force vector is shown in a different color, violet, to remind us that this force acts on a different object).

As evidence for the validity of Newton's third law, look at your hand when you push against the edge of a desk, Fig. 4–8. Your hand's shape is distorted, clear evidence that a force is being exerted on it. You can *see* the edge of the desk pressing into your hand. You can even *feel* the desk exerting a force on your hand; it hurts! The harder you push against the desk, the harder the desk pushes back on your hand. (You only feel forces exerted *on* you; when you exert a force on another object, what you feel is that object pushing back on you.)

As another demonstration of Newton's third law, consider the ice skater in Fig. 4–9. There is very little friction between her skates and the ice, so she will move freely if a force is exerted on her. She pushes against the wall; and then *she* starts moving backward. The force she exerts on the wall cannot make *her* start moving, for that force acts on the wall. Something had to exert a force *on her* to start her moving, and that force could only have been exerted by the wall. The force with which the wall pushes on her is, by Newton's third law, equal and opposite to the force she exerts on the wall.

When a person throws a package out of a boat (initially at rest), the boat starts moving in the opposite direction. The person exerts a force on the package. The package exerts an equal and opposite force back on the person, and this force propels the person (and the boat) backward slightly.

Rocket propulsion also is explained using Newton's third law (Fig. 4–10). A common misconception is that rockets accelerate because the gases rushing out the back of the engine push against the ground or the atmosphere. Not true. What happens, instead, is that a rocket exerts a strong force on the gases, expelling them; and the gases exert an equal and opposite force *on the rocket*. It is this latter force that propels the rocket forward—the force exerted *on* the rocket *by* the gases. Thus, a space vehicle is maneuvered in empty space by firing its rockets in the direction opposite to that in which it needs to accelerate. When the rocket pushes on the gases in one direction, the gases push back on the rocket in the opposite direction.