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FIGURE 25-44 ‘'Two CT images,
with different resolutions, each
showing a cross section of a brain.
Photo (a) is of low resolution:

photo (b). of higher resolution, shows
a brain tumor (dark area on the right).
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FIGURE 25-45 A simple 2 x% 2
image showing true absorption
values and measured projections.
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* Image Formation

But how is the image formed? We can think of the slice to be imaged as
being divided into many tiny picture elements (or pixels), which could be
squares. (See, for example, Fig. 24-49.) For CT, the width of each pixel is chosen
according to the width of the detectors and/or the width of the X-ray beams, and
this determines the resolution of the image, which might be | mm. An X-ray
detector measures the intensity of the transmitted beam. Subtracting this value
from the intensity of the beam at the source, yields the total absorption (called a
“projection”) along that beam line. Complicated mathematical techniques are
used to analyze all the absorption projections for the huge number of beam scans
measured (see the next subsection), obtaining the absorption at each pixel and
assigning each a “grayness value” according to how much radiation was absorbed.
The image is made up of tiny spots (pixels) of varying shades of gray. Often the
amount of absorption is color-coded. The colors in the resulting “false-color”
image have nothing to do, however, with the actual color of the object.

Figure 25-44 illustrates what actual CT images look like. Tt is generally
agreed that CT scanning has revolutionized some areas of medicine by providing
much less invasive, and/or more accurate, diagnosis.

Computed tomography can also be applied to ultrasound imaging
(Section 12-9) and to emissions from radioisotopes and nuclear magnetic
resonance (Sections 31-8 and 31-9).

Tomographic Image Reconstruction

How can the “grayness” of each pixel be determined even though all we can
measure is the total absorption along each beam line in the slice? Tt can be done
only by using the many beam scans made at a great many different angles.
Suppose the image is to be an array of 100 x 100 elements for a total of 10°*
pixels. If we have 100 detectors and measure the absorption projections at 100
different angles. then we get 10% pieces of information. From this information,
an image can be reconstructed, but not precisely. If more angles are measured,
the reconstruction of the image can be done more accurately.

To suggest how mathematical reconstruction is done, we consider a very
simple case using the “iterative” technique (“to iterate” is from the Latin “to
repeat”). Suppose our sample slice is divided into the simple 2 % 2 pixels as
shown in Fig. 25-45. The number in each pixel represents the amount of absorp-
tion by the material in that area (say, in tenths of a percent): that is, 4 represents
twice as much absorption as 2. But we cannot directly measure these values—
they are the unknowns we want to solve for. All we can measure are the
projections—the total absorption along each beam line—and these are shown in
the diagram as the sum of the absorptions for the pixels along each line at four
different angles. These projections (given at the tip of each arrow) are what we
can measure, and we now want to work back from them to see how close we can
get to the true absorption value for each pixel. We start our analysis with each
pixel being assigned a zero value, Fig. 25-46a. In the iterative technique, we use
the projections to estimate the absorption value in each square, and repeat for
each angle. The angle | projections are 7 and 13. We divide each of these equally
between their two squares: each square in the left column gets 33 (half of 7), and
each square in the right column gets 64 (half of 13); see Fig. 25-46b. Next we use

T FIGURE 25-46 Reconstructing the image using projections in an iterative procedure.
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