crement by examining the particular problem being investigated. The criterion for the size of the time increment may need to be changed during the course of the motion. In practice, however, we usually choose a time increment appropriate to the initial conditions and use the same value throughout the calculations. The size of the time increment influences the accuracy of the result, but unfortunately it is not easy to determine the accuracy of an Euler-method solution without a knowledge of the correct analytical solution. One method of determining the accuracy of the numerical solution is to repeat the calculations with a smaller time increment and compare results. If the two calculations agree to a certain number of significant figures, you can assume that the results are correct to that precision. ## SUMMARY Newton's second law applied to a particle moving in uniform circular motion states that the net force causing the particle to undergo a centripetal acceleration is $$\sum F_r = ma_r = \frac{mv^2}{r} \tag{6.1}$$ You should be able to use this formula in situations where the force providing the centripetal acceleration could be the force of gravity, a force of friction, a force of string tension, or a normal force. A particle moving in nonuniform circular motion has both a centripetal component of acceleration and a nonzero tangential component of acceleration. In the case of a particle rotating in a vertical circle, the force of gravity provides the tangential component of acceleration and part or all of the centripetal component of acceleration. Be sure you understand the directions and magnitudes of the velocity and acceleration vectors for nonuniform circular motion. An observer in a noninertial (accelerating) frame of reference must introduce **fictitious forces** when applying Newton's second law in that frame. If these fictitious forces are properly defined, the description of motion in the noninertial frame is equivalent to that made by an observer in an inertial frame. However, the observers in the two frames do not agree on the causes of the motion. You should be able to distinguish between inertial and noninertial frames and identify the fictitious forces acting in a noninertial frame. A body moving through a liquid or gas experiences a **resistive force** that is speed-dependent. This resistive force, which opposes the motion, generally increases with speed. The magnitude of the resistive force depends on the shape of the body and on the properties of the medium through which the body is moving. In the limiting case for a falling body, when the magnitude of the resistive force equals the body's weight, the body reaches its **terminal speed**. You should be able to apply Newton's laws to analyze the motion of objects moving under the influence of resistive forces. You may need to apply **Euler's method** if the force depends on velocity, as it does for air drag. ## **QUESTIONS** - 1. Because the Earth rotates about its axis and revolves around the Sun, it is a noninertial frame of reference. Assuming the Earth is a uniform sphere, why would the ap- - parent weight of an object be greater at the poles than at the equator? - 2. Explain why the Earth bulges at the equator.