EXAMPLE 3-4 Driving off a cliff. A movie stunt driver on a motorcycle speeds horizontally off a 50.0-m-high cliff. How fast must the motorcycle leave the cliff top to land on level ground below, 90.0 m from the base of the cliff where the cameras are? Ignore air resistance.

APPROACH We explicitly follow the steps of the Problem Solving Box. SOLUTION

- 1. and 2. Read, choose the object, and draw a diagram. Our object is the motorcycle and driver, taken as a single unit. The diagram is shown in Fig. 3-21.
- 3. Choose a coordinate system. We choose the y direction to be positive upward, with the top of the cliff as $y_0 = 0$. The x direction is horizontal with $x_0 = 0$ at the point where the motorcycle leaves the cliff.
- **4.** Choose a time interval. We choose our time interval to begin (t = 0) just as the motorcycle leaves the cliff top at position $x_0 = 0$, $y_0 = 0$; our time interval ends just before the motorcycle hits the ground below.
- **5. Examine x and y motions.** In the horizontal (x) direction, the acceleration $a_x = 0$, so the velocity is constant. The value of x when the motorcycle reaches the ground is x = +90.0 m. In the vertical direction, the acceleration is the acceleration due to gravity, $a_v = -g = -9.80 \,\mathrm{m/s^2}$. The value of y when the motorcycle reaches the ground is $y = -50.0 \,\mathrm{m}$. The initial velocity is horizontal and is our unknown, v_{x0} ; the initial vertical velocity is zero, $v_{y0} = 0$.
- 6. List knowns and unknowns. See the Table in the margin. Note that in addition to not knowing the initial horizontal velocity v_{x0} (which stays constant until landing), we also do not know the time t when the motorcycle reaches the
- 7. Apply relevant equations. The motorcycle maintains constant v_x as long as it is in the air. The time it stays in the air is determined by the y motion when it hits the ground. So we first find the time using the y motion, and then use this time value in the x equations. To find out how long it takes the motorcycle to reach the ground below, we use Eq. 2-11b (Table 3-2) for the vertical (y) direction with $y_0 = 0$ and $v_{y0} = 0$:

$$y = y_0 + v_{y0}t + \frac{1}{2}a_yt^2$$

= 0 + 0 + \frac{1}{2}(-g)t^2

or

$$y = -\frac{1}{2}gt^2$$
.

We solve for t and set v = -50.0 m:

$$t = \sqrt{\frac{2y}{-g}} = \sqrt{\frac{2(-50.0 \text{ m})}{-9.80 \text{ m/s}^2}} = 3.19 \text{ s}.$$

To calculate the initial velocity, v_{x0} , we again use Eq. 2-11b, but this time for the horizontal (x) direction, with $a_x = 0$ and $x_0 = 0$:

$$x = x_0 + v_{x0}t + \frac{1}{2}a_xt^2$$

= 0 + $v_{x0}t$ + 0

$$x = v_{x0}t$$
.

Then

$$v_{x0} = \frac{x}{t} = \frac{90.0 \text{ m}}{3.19 \text{ s}} = 28.2 \text{ m/s},$$

which is about 100 km/h (roughly 60 mi/h).

NOTE In the time interval of the projectile motion, the only acceleration is g in the negative y direction. The acceleration in the x direction is zero.

FIGURE 3-21 Example 3-4.

Known	Unknown
$x_0 = y_0 = 0$	v_{x0}
$x = 90.0 \mathrm{m}$	t
$y = -50.0 \mathrm{m}$	
$a_x = 0$	
$a_v = -g = -9.80 \mathrm{m/s^2}$	
$v_{y0} = 0$	