

FIGURE 20-32 Calculating the torque on a current loop in a magnetic field B. (a) Loop face parallel to B field lines; (b) top view; (c) loop makes an angle to \vec{B} , reducing the torque since the lever arm is reduced.

Torque on current loop

Magnetic dipole moment

* 20-9 Torque on a Current Loop; Magnetic Moment

When an electric current flows in a closed loop of wire placed in an external magnetic field, as shown in Fig. 20-32, the magnetic force on the current can produce a torque. This is the principle behind a number of important practical devices, including voltmeters, ammeters, and motors. (We discuss these applications in the next Section.) The interaction between a current and a magnetic field is important in other areas as well, including atomic physics.

Current flows through the loop in Fig. 20–32a, whose face we assume is parallel to \vec{B} and is rectangular. \vec{B} exerts no force and no torque on the horizontal segments of wire because they are parallel to the field and $\sin \theta = 0$ in Eq. 20–1. But the magnetic field does exert a force on each of the vertical sections of wire as shown, $\vec{\mathbf{F}}_1$ and $\vec{\mathbf{F}}_2$ (see also top view, Fig. 20–32b). By right-hand-rule-2 (Fig. 20–11c) the direction of the force on the upward current on the left is in the opposite direction from the equal magnitude force \vec{F}_2 on the descending current on the right. These forces give rise to a net torque that tends to rotate the coil about its vertical axis.

Let us calculate the magnitude of this torque. From Eq. 20–2 (current $\perp \vec{B}$), the force F = IaB, where a is the length of the vertical arm of the coil. The lever arm for each force is b/2, where b is the width of the coil and the "axis" is at the midpoint. The torques produced by \mathbf{F}_1 and \mathbf{F}_2 act in the same direction, so the total torque is the sum of the two torques:

$$\tau = IaB\frac{b}{2} + IaB\frac{b}{2} = IabB = IAB,$$

where A = ab is the area of the coil. If the coil consists of N loops of wire, the current is then NI, so the torque becomes

$$\tau = NIAB$$
.

If the coil makes an angle θ with the magnetic field, as shown in Fig. 20–32c, the forces are unchanged, but each lever arm is reduced from $\frac{1}{2}b$ to $\frac{1}{2}b\sin\theta$. Note that the angle θ is taken to be the angle between $\vec{\bf B}$ and the perpendicular to the face of the coil, Fig. 20-32c. So the torque becomes

$$\tau = NIAB\sin\theta. \tag{20-10}$$

This formula, derived here for a rectangular coil, is valid for any shape of flat coil. The quantity NIA is called the magnetic dipole moment of the coil:

$$M = NIA ag{20-11}$$

and is considered a vector perpendicular to the coil.

EXAMPLE 20–12 Torque on a coil. A circular coil of wire has a diameter of 20.0 cm and contains 10 loops. The current in each loop is 3.00 A, and the coil is placed in a 2.00-T external magnetic field. Determine the maximum and minimum torque exerted on the coil by the field.

APPROACH Equation 20-10 is valid for any shape of coil, including circular loops. Maximum and minimum torque are determined by the angle θ the coil makes with the magnetic field.

SOLUTION The area of one loop of the coil is

$$A = \pi r^2 = \pi (0.100 \,\mathrm{m})^2 = 3.14 \times 10^{-2} \,\mathrm{m}^2$$
.

The maximum torque occurs when the coil's face is parallel to the magnetic field, so $\theta = 90^{\circ}$ in Fig. 20–32c, and $\sin \theta = 1$ in Eq. 20–10:

$$\tau = NIAB \sin \theta = (10)(3.00 \text{ A})(3.14 \times 10^{-2} \text{ m}^2)(2.00 \text{ T})(1) = 1.88 \text{ N} \cdot \text{m}.$$

The minimum torque occurs if $\sin \theta = 0$, for which $\theta = 0^{\circ}$, and then $\tau = 0$ from Eq. 20-10.

NOTE If the coil is free to turn, it will rotate toward the orientation with $\theta = 0^{\circ}$.