Figure 20–22 shows four long parallel wires which carry equal currents into or out of the page as shown. In which configuration, (a) or (b), is the magnetic field greater at the center of the square?

RESPONSE It is greater in (a). The arrows illustrate the directions of the field produced by each wire; check it out, using the right-hand rule to confirm these results. The net field at the center is the superposition of the four fields, which will point to the left in (a) and is zero in (b).

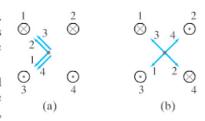


FIGURE 20-22 Example 20-9.

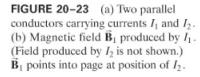
20-6 Force between Two Parallel Wires

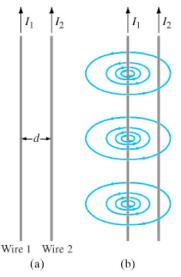
We have seen that a wire carrying a current produces a magnetic field (magnitude given by Eq. 20–6 for a long straight wire). Also, a current-carrying wire feels a force when placed in a magnetic field (Section 20–3, Eq. 20–1). Thus, we expect that two current-carrying wires will exert a force on each other.

Consider two long parallel wires separated by a distance d, as in Fig. 20–23a. They carry currents I_1 and I_2 , respectively. Each current produces a magnetic field that is "felt" by the other, so each must exert a force on the other. For example, the magnetic field B_1 produced by I_1 in Fig 20–23 is given by Eq. 20–6, which at the location of wire 2 is

$$B_1 = \frac{\mu_0}{2\pi} \frac{I_1}{d}.$$

See Fig. 20–23b, where the field due *only* to I_1 is shown. According to Eq. 20–2, the force F_2 exerted by B_1 on a length I_2 of wire 2, carrying current I_2 , is


$$F_2 = I_2 B_1 l_2$$
.


Note that the force on I_2 is due only to the field produced by I_1 . Of course, I_2 also produces a field, but it does not exert a force on itself. We substitute B_1 into the formula for F_2 and find that the force on a length I_2 of wire 2 is

$$F_2 = \frac{\mu_0}{2\pi} \frac{I_1 I_2}{d} l_2. \tag{20-7}$$

If we use right-hand-rule-1 of Fig. 20–8c, we see that the lines of B_1 are as shown in Fig. 20–23b. Then using right-hand-rule-2 of Fig. 20–11c, we see that the force exerted on I_2 will be to the left in Fig. 20–23b. That is, I_1 exerts an attractive force on I_2 (Fig. 20–24a). This is true as long as the currents are in the same direction. If I_2 is in the opposite direction, the right-hand rule indicates that the force is in the opposite direction. That is, I_1 exerts a repulsive force on I_2 (Fig. 20–24b).

Reasoning similar to that above shows that the magnetic field produced by I_2 exerts an equal but opposite force on I_1 . We expect this to be true also from Newton's third law, of course. Thus, as shown in Fig. 20–24, parallel currents in the same directions attract each other, whereas parallel currents in opposite directions repel.

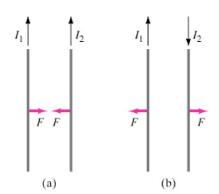


FIGURE 20–24 (a) Parallel currents in the same direction exert an attractive force on each other. (b) Antiparallel currents (in opposite directions) exert a repulsive force on each other.