flowing through it. The full-scale current sensitivity, $I_{\rm m}$, of a galvanometer is the current needed to make the needle deflect full scale.

A galvanometer can be used directly to measure small dc currents. For example, a galvanometer whose sensitivity $I_{\rm m}$ is 50 μA can measure currents from about 1 µA (currents smaller than this would be hard to read on the scale) up to $50 \,\mu\text{A}$. To measure larger currents, a resistor is placed in parallel with the galvanometer. Thus, an ammeter, represented by the symbol •-(♣)•, consists of a galvanometer (+G+) in parallel with a resistor called the shunt resistor, as shown in Fig. 19-30. ("Shunt" is a synonym for "in parallel.") The shunt resistance is $R_{\rm sh}$, and the resistance of the galvanometer coil, through which current passes, is r. The value of $R_{\rm sh}$ is chosen according to the full-scale deflection desired; R_{sh} is normally very small—giving an ammeter a very small net resistance—so most of the current passes through $R_{\rm sh}$ and very little ($\lesssim 50 \,\mu A$) passes through the galvanometer to deflect the needle.

Ammeter uses shunt resistor in parallel

> FIGURE 19-30 An ammeter is a galvanometer in parallel with a (shunt) resistor with low resistance, R_{sh} .

EXAMPLE 19-14 Ammeter design. Design an ammeter to read 1.0 A at full scale using a galvanometer with a full-scale sensitivity of 50 µA and a resistance $r = 30 \Omega$. Check if the scale is linear.

APPROACH Only 50 μ A (= $I_G = 0.000050$ A) of the 1.0-A current must pass through the galvanometer to give full-scale deflection. The rest of the current $(I_R = 0.999950 \text{ A})$ passes through the small shunt resistor, R_{sh} , Fig. 19-30. The potential difference across the galvanometer equals that across the shunt resistor (they are in parallel). We apply Ohm's law to find $R_{\rm sh}$.

SOLUTION Because $I = I_G + I_R$, when $I = 1.0 \,\text{A}$ flows into the meter, we want I_R through the shunt resistor to be $I_R = 0.999950 \,\mathrm{A}$. The potential difference across the shunt is the same as across the galvanometer, so Ohm's law tells us

 $I_R R_{\rm sh} = I_G r$;

then

$$R_{\rm sh} = \frac{I_{\rm G} r}{I_{R}} = \frac{(5.0 \times 10^{-5} \,\mathrm{A})(30 \,\Omega)}{(0.999950 \,\mathrm{A})}$$

= 1.5 × 10⁻³ Ω ,

or 0.0015Ω . The shunt resistor must thus have a very low resistance and most of the current passes through it.

If the current I into the meter is 0.50 A, say, this will produce a current to the galvanometer equal to

$$I_{\rm G} = \frac{I_R R_{\rm sh}}{r} = \frac{(0.50 \,\mathrm{A})(1.5 \times 10^{-3} \,\Omega)}{30 \,\Omega}$$

which gives a deflection half of full scale; so the scale is linear.