Windshield wipers FIGURE 19–24 Electronic batterypowered pacemaker can be seen on the rib cage in this X-ray. The intermittent windshield wipers of a car can also use an RC circuit. The RC time constant, which can be changed using a multi-positioned switch for different values of R with fixed C, determines the rate at which the wipers come on. An interesting medical use of an RC circuit is the electronic heart pacemaker, which can make a stopped heart start beating again by applying an electric stimulus through electrodes attached to the chest. The stimulus can be repeated at the normal heartbeat rate if necessary. The heart itself contains pacemaker cells, which send out tiny electric pulses at a rate of 60 to 80 per minute. These signals induce the start of each heartbeat. In some forms of heart disease, the natural pacemaker fails to function properly, and the heart loses its beat. Such patients use electronic pacemakers which produce a regular voltage pulse that starts and controls the frequency of the heartbeat. The electrodes are implanted in or near the heart (Fig. 19–24), and the circuit contains a capacitor and a resistor. The charge on the capacitor increases to a certain point and then discharges. Then it starts charging again. The pulsing rate depends on the values of R and C. ## 19-7 Electric Hazards Excess electric current can heat wires in buildings and cause fires, as discussed in Section 18–6. Electric current can also damage the human body or even be fatal. Electric current through the human body can cause damage in two ways: (1) Electric current heats tissue and can cause burns; (2) electric current stimulates nerves and muscles (whose operation, as we saw in Sections 17–11 and 18–10, is electrical), and we feel a "shock." The severity of a shock depends on the magnitude of the current, how long it acts, and through what part of the body it passes. A current passing through vital organs such as the heart or brain is especially serious for it can interfere with their operation. Most people can "feel" a current of about 1 mA. Currents of a few mA cause pain but rarely cause much damage in a healthy person. Currents above 10 mA cause severe contraction of the muscles, and a person may not be able to release the source of the current (say, a faulty appliance or wire). Death from paralysis of the respiratory system can occur. Artificial respiration, however, can sometimes revive a victim. If a current above about 80 to 100 mA passes across the torso, so that a portion passes through the heart for more than a second or two, the heart muscles will begin to contract irregularly and blood will not be properly pumped. This condition is called *ventricular fibrillation*. If it lasts for long, death results. Strangely enough, if the current is much larger, on the order of 1 A, death by heart failure may be less likely, but such currents can cause serious burns, especially if concentrated through a small area of the body. The seriousness of a shock depends on the applied voltage and on the effective resistance of the body. Living tissue has low resistance since the fluid of cells contains ions that can conduct quite well. However, the outer layer of skin, when dry, offers high resistance and is thus protective. The effective resistance between two points on opposite sides of the body when the skin is dry is in the range of 10^4 to 10^6 Ω . But when the skin is wet, the resistance may be 10^3 Ω or less. [†]Larger currents apparently bring the entire heart to a standstill. Upon release of the current, the heart returns to its normal rhythm. This may not happen when fibrillation occurs because, once started, it can be hard to stop. Fibrillation may also occur as a result of a heart attack or during heart surgery. A device known as a *defibrillator* (described in Section 17–9) can apply a brief high current to the heart, causing complete heart stoppage which is often followed by resumption of normal beating. Dangers of electricity