
FIGURE 19–8 (a) Circuit for Examples 19–4 and 19–5. (b) Equivalent circuit, showing the equivalent resistance of 290 Ω for the two parallel resistors in (a).

EXAMPLE 19-4 Circuit with series and parallel. How much current is drawn from the battery shown in Fig. 19–8a?

APPROACH The current I that flows out of the battery all passes through the 400- Ω resistor, but then it splits into I_1 and I_2 passing through the 500- Ω and 700- Ω resistors. The latter two resistors are in parallel with each other. We look for simplicity, something that we already know how to treat. So let's start by finding the equivalent resistance, R_P , of the parallel resistors, 500 Ω and 700 Ω . Then we can consider this R_P to be in series with the 400- Ω resistor.

SOLUTION The equivalent resistance, R_P , of the 500- Ω and 700- Ω resistors in parallel is given by

$$\frac{1}{R_{\rm P}} = \frac{1}{500~\Omega} \, + \, \frac{1}{700~\Omega} \, = \, 0.0020~\Omega^{-1} \, + \, 0.0014~\Omega^{-1} \, = \, 0.0034~\Omega^{-1}.$$

This is $1/R_P$, so we take the reciprocal to find R_P . It is a common mistake to forget to take this reciprocal. Notice that the units of reciprocal ohms, Ω^{-1} , are a reminder. Thus

$$R_{\rm P} = \frac{1}{0.0034 \, \Omega^{-1}} = 290 \, \Omega.$$

This 290 Ω is the equivalent resistance of the two parallel resistors, and is in series with the 400- Ω resistor as shown in the equivalent circuit of Fig. 19–8b. To find the total equivalent resistance $R_{\rm eq}$, we add the 400- Ω and 290- Ω resistances together, since they are in series, and find

$$R_{\rm eq} = 400 \,\Omega + 290 \,\Omega = 690 \,\Omega.$$

The total current flowing from the battery is then

$$I = \frac{V}{R_{\rm eq}} = \frac{12.0 \text{ V}}{690 \,\Omega} = 0.0174 \text{ A} \approx 17 \text{ mA}.$$

NOTE This I is also the current flowing through the 400- Ω resistor, but not through the 500- Ω and 700- Ω resistors (both currents are less—see the next Example).

NOTE Complex resistor circuits can often be analyzed in this way, considering the circuit as a combination of series and parallel resistances.

Remember to take the reciprocal