

FIGURE 16-20 Determining the forces for Example 16-4. (a) The directions of the individual forces are as shown because \vec{F}_{32} is repulsive (the force on Q_3 is in the direction away from Q2 because Q_3 and Q_2 are both positive) whereas \vec{F}_{31} is attractive (Q_3 and Q_1 have opposite signs), so $\vec{\mathbf{F}}_{31}$ points toward Q_1 . (b) Adding \vec{F}_{32} to \vec{F}_{31} to obtain the net

SOLUTION The magnitudes of $\vec{\mathbf{F}}_{31}$ and $\vec{\mathbf{F}}_{32}$ are (ignoring signs of the charges since we know the directions)

$$F_{31} = k \frac{Q_3 Q_1}{r_{31}^2} = \frac{(9.0 \times 10^9 \,\mathrm{N \cdot m^2/C^2})(6.5 \times 10^{-5} \,\mathrm{C})(8.6 \times 10^{-5} \,\mathrm{C})}{(0.60 \,\mathrm{m})^2} = 140 \,\mathrm{N},$$

$$F_{32} = k \frac{Q_3 Q_2}{r_{32}^2} = \frac{(9.0 \times 10^9 \,\mathrm{N \cdot m^2/C^2})(6.5 \times 10^{-5} \,\mathrm{C})(5.0 \times 10^{-5} \,\mathrm{C})}{(0.30 \,\mathrm{m})^2} = 330 \,\mathrm{N}.$$

$$F_{32} = k \frac{Q_3 Q_2}{r_{32}^2} = \frac{(9.0 \times 10^9 \,\mathrm{N \cdot m^2/C^2})(6.5 \times 10^{-5} \,\mathrm{C})(5.0 \times 10^{-5} \,\mathrm{C})}{(0.30 \,\mathrm{m})^2} = 330 \,\mathrm{N}.$$

We resolve \vec{F}_{31} into its components along the x and y axes, as shown in Fig. 16–20a:

$$F_{31x} = F_{31} \cos 30^\circ = (140 \text{ N}) \cos 30^\circ = 120 \text{ N},$$

$$F_{31y} = -F_{31} \sin 30^\circ = -(140 \text{ N}) \sin 30^\circ = -70 \text{ N}.$$

The force $\vec{\mathbf{F}}_{32}$ has only a y component. So the net force $\vec{\mathbf{F}}$ on Q_3 has components

$$F_x = F_{31x} = 120 \,\text{N},$$

$$F_y = F_{32} + F_{31y} = 330 \,\text{N} - 70 \,\text{N} = 260 \,\text{N}.$$

The magnitude of the net force is

$$F = \sqrt{F_x^2 + F_y^2} = \sqrt{(120 \,\mathrm{N})^2 + (260 \,\mathrm{N})^2} = 290 \,\mathrm{N};$$

and it acts at an angle θ (see Fig. 16-20b) given by

$$\tan \theta = \frac{F_y}{F_x} = \frac{260 \text{ N}}{120 \text{ N}} = 2.2,$$

so
$$\theta = \tan^{-1}(2.2) = 65^{\circ}$$
.

NOTE Because $\vec{\mathbf{F}}_{31}$ and $\vec{\mathbf{F}}_{32}$ are not along the same line, the magnitude of $\vec{\mathbf{F}}_3$ is not equal to the sum (or difference as in Example 16-3) of the separate magnitudes. That is, F_3 is not equal to $F_{31} + F_{32}$; nor does it equal $F_{32} - F_{31}$. Instead we had to do vector addition.

FIGURE 16-21 Example 16-5 and Exercise D: Q_4 exerts force $(\vec{\mathbf{F}}_{34})$ that makes the net force on Q_3 zero.

CONCEPTUAL EXAMPLE 16–5 Make the force on Q_3 zero. In Fig. 16–20, where could you place a fourth charge, $Q_4 = -50 \,\mu\text{C}$, so that the net force on Q3 would be zero?

RESPONSE By the principle of superposition, we need a force in exactly the opposite direction to the resultant \vec{F} due to O_2 and O_1 that we calculated in Example 16-4, Fig. 16-20b. Our force must have magnitude 290 N, and must point down and to the left of Q_3 in Fig. 16-20b. So Q_4 must be along this line. See Fig. 16-21.

EXERCISE D In Example 16–5, what distance r must Q_4 be from Q_3 ?

EXERCISE E (a) Consider two point charges of the same magnitude but opposite sign (+Q and −Q), which are fixed a distance d apart. Can you find a location where a third positive charge Q could be placed so that the net electric force on this third charge is zero? (b) What if the first two charges were both +Q?

