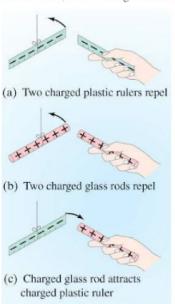

FIGURE 16-1 (a) Rub a plastic ruler and (b) bring it close to some tiny pieces of paper.

16–1 Static Electricity; Electric Charge and Its Conservation


The word *electricity* comes from the Greek word *elektron*, which means "amber." Amber is petrified tree resin, and the ancients knew that if you rub a piece of amber with a cloth, the amber attracts small pieces of leaves or dust. A piece of hard rubber, a glass rod, or a plastic ruler rubbed with a cloth will also display this "amber effect," or **static electricity** as we call it today. You can readily pick up small pieces of paper with a plastic comb or ruler that you've just vigorously rubbed with even a paper towel. See the photo on the previous page and Fig. 16–1. You have probably experienced static electricity when combing your hair or when taking a synthetic blouse or shirt from a clothes dryer. And you may have felt a shock when you touched a metal doorknob after sliding across a car seat or walking across a nylon carpet. In each case, an object becomes "charged" as a result of rubbing, and is said to possess a net **electric charge**.

Is all electric charge the same, or is there more than one type? In fact, there are *two* types of electric charge, as the following simple experiments show. A plastic ruler suspended by a thread is vigorously rubbed with a cloth to charge it. When a second plastic ruler, which has also been charged in the same way, is brought close to the first, it is found that the one ruler *repels* the other. This is shown in Fig. 16–2a. Similarly, if a rubbed glass rod is brought close to a second charged glass rod, again a repulsive force is seen to act, Fig. 16–2b. However, if the charged glass rod is brought close to the charged plastic ruler, it is found that they *attract* each other, Fig. 16–2c. The charge on the glass must therefore be different from that on the plastic. Indeed, it is found experimentally that all charged objects fall into one of two categories. Either they are attracted to the plastic and repelled by the glass; or they are repelled by the plastic and attracted to the glass. Thus there seem to be two, and only two, types of electric charge. Each type of charge repels the same type but attracts the opposite type. That is: **unlike charges attract; like charges repel**.

The two types of electric charge were referred to as *positive* and *negative* by the American statesman, philosopher, and scientist Benjamin Franklin (1706–1790). The choice of which name went with which type of charge was arbitrary. Franklin's choice set the charge on the rubbed glass rod to be positive charge, so the charge on a rubbed plastic ruler (or amber) is called negative charge. We still follow this convention today.

Franklin argued that whenever a certain amount of charge is produced on one object, an equal amount of the opposite type of charge is produced on another object. The positive and negative are to be treated *algebraically*, so during any process, the net change in the amount of charge produced is zero. For example, when a plastic ruler is rubbed with a paper towel, the plastic acquires a negative charge and the towel acquires an equal amount of positive charge. The charges are separated, but the sum of the two is zero.

FIGURE 16-2 Like charges repel one another; unlike charges attract.

Like charges repel; unlike charges attract