| Form of Electric
Energy Production | % of Production (approx.) | | | | |---|---------------------------|-------|---|---| | | U.S. | World | Advantages | Disadvantages | | Fossil-fuel steam plants: burn coal, oil, or natural gas to boil water, producing high-pressure steam that turns a turbine of a generator (Figs. 15–12b, 15–21); uses heat engine. | 87 | 86 | We know how to build them; for
now relatively inexpensive. | Air pollution; thermal pollution
limited efficiency; land
devastation from extraction of
raw materials (mining); global
warming; accidents such as oil
spills at sea; limited fuel supply
(estimates range from a couple
of decades to a few centuries). | | Nuclear energy: | | | | | | Fission: nuclei of uranium or plutonium atoms split ("fission") with release of energy (Chapter 31) that heats steam; uses heat engine. | 8 | 6 | Normally almost no air pollution; less contribution to global warming; relatively inexpensive. | Thermal pollution; accidents car
release damaging radioactivity;
difficult disposal of radioactive
by-products; possible diversion
of nuclear material by terrorists
limited fuel supply. | | Fusion: energy released when isotopes of hydrogen (or other small nuclei) combine or "fuse" (Chapter 31). | 0 | 0 | Relatively "clean"; vast fuel
supply (hydrogen in water
molecules in oceans); less
contribution to global warming. | Not yet workable. | | Hydroelectric: Falling water turns turbines at the base of a dam. | 4 | 7 | No heat engine needed; no air,
water, or thermal pollution;
relatively inexpensive; high
efficiency; dams can control
flooding. | Reservoirs behind dams inundat
scenic land or canyons; dams
block upstream migration of
salmon and other fish for
reproduction; few locations
remain for new dams; drought. | | Geothermal: natural steam from inside the Earth comes to the surface (hot springs, geysers, steam vents); or cold water passed down into contact with hot, dry rock is heated to steam. | <1 | <1 | No heat engine needed; little air pollution; good efficiency; relatively inexpensive and "clean." | Few appropriate sites; small production; mineral content of spent hot water can pollute. | | Wind power: 3-kW to 5-MW windmills (vanes up to 50 m wide) turn a generator. | <1 | <1 | No heat engine; no air, water or thermal pollution; relatively inexpensive. | Large array of big windmills
might affect weather and be
eyesores; hazardous to
migratory birds; winds not
always strong. | | Solar energy: Active solar heating: rooftop solar panels absorb the Sun's rays, which heat water in tubes for space heating and hot water supply. | | <1 | No heat engine needed; no air or thermal pollution; unlimited fuel supply. | Space limitations; may require
back-up; relatively expensive;
less effective when cloudy. | | Passive solar heating: architectural devices—windows along southern exposure, sunshade over windows to keep Sun's rays out in summer. | | | No heat engine needed; no air or thermal pollution; relatively inexpensive. | Almost none, but other methods needed too. | | Solar cells (photovoltaic cells):
convert sunlight directly into
electricity without use of heat
engine. | | | No heat engine; thermal, air, and water pollution very low; good efficiency (>30% and improving). | Expensive; chemical pollution a
manufacture; large land area
needed as Sun's energy not
concentrated. |