15-8 Order to Disorder The concept of entropy, as we have discussed it so far, may seem rather abstract. To get a feel for the concept of entropy, we can relate it to the more ordinary concepts of *order* and *disorder*. In fact, the entropy of a system can be considered a *measure of the disorder of the system*. Then the second law of thermodynamics can be stated simply as: SECOND LAW OF THERMODYNAMICS (general statement) ## Natural processes tend to move toward a state of greater disorder. Exactly what we mean by disorder may not always be clear, so we now consider a few examples. Some of these will show us how this very general statement of the second law applies beyond what we usually consider as thermodynamics. Let us look at the simple processes mentioned in Section 15–4. First, a jar containing separate layers of salt and pepper is more orderly than a jar in which the salt and pepper are all mixed up. Shaking a jar containing separate layers results in a mixture, and no amount of shaking brings the orderly layers back again. The natural process is from a state of relative order (layers) to one of relative disorder (a mixture), not the reverse. That is, disorder increases. Second, a solid coffee cup is a more "orderly" and useful object than the pieces of a broken cup. Cups break when they fall, but they do not spontaneously mend themselves (as faked in Fig 15–10). Again, the normal course of events is an increase of disorder. When a hot object is put in contact with a cold object, heat flows from the high temperature to the low until the two objects reach the same intermediate temperature. At the beginning of the process we can distinguish two classes of molecules: those with a high average kinetic energy (the hot object), and those with a low average kinetic energy (the cooler object). After the process in which heat flows, all the molecules are in one class with the same average kinetic energy; we no longer have the more orderly arrangement of molecules in two classes. Order has gone to disorder. Furthermore, the separate hot and cold objects could serve as the hot- and cold-temperature regions of a heat engine, and thus could be used to obtain useful work. But once the two objects are put in contact and reach the same temperature, no work can be obtained. Disorder has increased, since a system that has the ability to perform work must surely be considered to have a higher order than a system no longer able to do work. When a stone falls to the ground, its kinetic energy is transformed to thermal energy. (We noted earlier that the reverse never happens: a stone never absorbs thermal energy and rises into the air of its own accord.) This is another example of order changing to disorder. Thermal energy is associated with the disorderly random motion of molecules, but the molecules in the falling stone all have the same velocity downward in addition to their own random velocities. Thus, the more orderly kinetic energy of the stone is changed to disordered thermal energy when the stone strikes the ground. Disorder increases in this process, as it does in all processes that occur in nature. ## 15-9 Unavailability of Energy; Heat Death In the process of heat conduction from a hot object to a cold one, we have seen that entropy increases and that order goes to disorder. The separate hot and cold objects could serve as the high- and low-temperature regions for a heat engine and thus could be used to obtain useful work. But after the two objects are put in contact with each other and reach the same uniform temperature, no work can be obtained from them. With regard to being able to do useful work, order has gone to disorder in this process.