Next we solve Eq. 2-6 for t, obtaining

$$t = \frac{v - v_0}{a}$$

and substituting this into the previous equation we have

$$x = x_0 + \left(\frac{v + v_0}{2}\right) \left(\frac{v - v_0}{a}\right) = x_0 + \frac{v^2 - v_0^2}{2a}$$

We solve this for v^2 and obtain

$$v^2 = v_0^2 + 2a(x - x_0),$$
 [constant acceleration] (2-10)

v related to a and x (a = constant)

which is the useful equation we sought.

We now have four equations relating position, velocity, acceleration, and time, when the acceleration a is constant. We collect these kinematic equations here in one place for future reference (the tan background screen emphasizes their usefulness):

$$v = v_0 + at$$

$$x = x_0 + v_0 t + \frac{1}{2} a t^2$$

$$v^2 = v_0^2 + 2a(x - x_0)$$

$$\overline{v} = \frac{v + v_0}{2}.$$

$$[a = constant] \quad (2-11a)$$

$$[a = constant]$$
 (2–11b)

$$[a = constant]$$
 (2-11c)

$$[a = constant]$$
 (2–11d)

Kinematic equations

for constant acceleration

(we'll use them a lot)

These useful equations are not valid unless a is a constant. In many cases we can set $x_0 = 0$, and this simplifies the above equations a bit. Note that x represents position, not distance, that $x - x_0$ is the displacement, and that t is the elapsed time.

EXAMPLE 2-6 Runway design. You are designing an airport for small planes. One kind of airplane that might use this airfield must reach a speed before takeoff of at least 27.8 m/s (100 km/h), and can accelerate at 2.00 m/s². (a) If the runway is 150 m long, can this airplane reach the required speed for take off? (b) If not, what minimum length must the runway have?

APPROACH The plane's acceleration is given as constant $(a = 2.00 \text{ m/s}^2)$, so we can use the kinematic equations for constant acceleration. In (a), we are given that the plane can travel a distance of 150 m. The plane starts from rest, so $v_0 = 0$ and we take $x_0 = 0$. We want to find its velocity, to determine if it will be at least 27.8 m/s. We want to find v when we are given:

Known	Wanted
$x_0 = 0$	v
$v_0 = 0$	
x = 150 m	
$a = 2.00 \mathrm{m/s^2}$	

SOLUTION (a) Of the above four equations, Eq. 2–11c will give us v when we know v_0 , a, x, and x_0 :

$$v^{2} = v_{0}^{2} + 2a(x - x_{0})$$

$$= 0 + 2(2.0 \text{ m/s}^{2})(150 \text{ m}) = 600 \text{ m}^{2}/\text{s}^{2}$$

$$v = \sqrt{600 \text{ m}^{2}/\text{s}^{2}} = 24.5 \text{ m/s}.$$

This runway length is not sufficient.

(b) Now we want to find the minimum length of runway, $x - x_0$, given v = 27.8 m/s and $a = 2.00 \text{ m/s}^2$. So we again use Eq. 2–11c, but rewritten as

$$(x - x_0) = \frac{v^2 - v_0^2}{2a} = \frac{(27.8 \text{ m/s})^2 - 0}{2(2.0 \text{ m/s}^2)} = 193 \text{ m}.$$

A 200-m runway is more appropriate for this plane.

➡ PROBLEM SOLVING

Equations 2-11 are valid only when the acceleration is constant, which we assume in this Example