change of velocity, a change in direction of velocity constitutes an acceleration, just as a change in magnitude of velocity does. Thus, an object revolving in a circle is continuously accelerating, even when the speed remains constant $(v_1 = v_2 = v)$. We now investigate this acceleration quantitatively.

Acceleration is defined as

$$\vec{\mathbf{a}} = \frac{\vec{\mathbf{v}}_2 - \vec{\mathbf{v}}_1}{\Delta t} = \frac{\Delta \vec{\mathbf{v}}}{\Delta t},$$

where $\Delta \vec{v}$ is the change in velocity during the short time interval Δt . We will eventually consider the situation in which Δt approaches zero and thus obtain the instantaneous acceleration. But for purposes of making a clear drawing, Fig. 5–2, we consider a nonzero time interval. During the time interval Δt , the particle in Fig. 5-2a moves from point A to point B, covering a distance Δl along the arc which subtends an angle $\Delta\theta$. The change in the velocity vector is $\vec{\mathbf{v}}_2 - \vec{\mathbf{v}}_1 = \Delta \vec{\mathbf{v}}$, and is shown in Fig. 5–2b.

If we let Δt be very small (approaching zero), then Δl and $\Delta \theta$ are also very small, and $\vec{\mathbf{v}}_2$ will be almost parallel to $\vec{\mathbf{v}}_1$; $\Delta \vec{\mathbf{v}}$ will be essentially perpendicular to them (Fig. 5-2c). Thus $\Delta \vec{v}$ points toward the center of the circle. Since \vec{a} , by definition, is in the same direction as $\Delta \vec{v}$, it too must point toward the center of the circle. Therefore, this acceleration is called centripetal acceleration ("center-pointing" acceleration) or radial acceleration (since it is directed along the radius, toward the center of the circle), and we denote it by \vec{a}_R .

We next determine the magnitude of the centripetal (radial) acceleration, a_R . Because CA in Fig. 5-2a is perpendicular to \vec{v}_1 , and CB is perpendicular to \vec{v}_2 , it follows that the angle $\Delta\theta$, defined as the angle between CA and CB, is also the angle between \vec{v}_1 and \vec{v}_2 . Hence the vectors \vec{v}_1 , \vec{v}_2 , and $\Delta \vec{v}$ in Fig. 5-2b form a triangle that is geometrically similar to triangle CAB in Fig. 5–2a. If we take $\Delta\theta$ to be very small (letting Δt be very small) and setting $v = v_1 = v_2$ because the magnitude of the velocity is assumed not to change, we can write

$$\frac{\Delta v}{v} \approx \frac{\Delta l}{r}$$
.

This is an exact equality when Δt approaches zero, for then the arc length Δt equals the cord length AB. We want to find the instantaneous acceleration, so we let Δt approach zero, write the above expression as an equality, and then solve for Δv :

$$\Delta v = \frac{v}{r} \Delta l.$$

To get the centripetal acceleration, a_R , we divide Δv by Δt :

$$a_{\rm R} = \frac{\Delta v}{\Delta t} = \frac{v}{r} \frac{\Delta l}{\Delta t}.$$

But $\Delta l/\Delta t$ is just the linear speed, v, of the object, so

$$a_{\rm R} = \frac{v^2}{r}$$
. (5-1) Centripetal (radial) acceleration

Equation 5–1 is valid even when v is not constant.

To summarize, an object moving in a circle of radius r at constant speed v has an acceleration whose direction is toward the center of the circle and whose magnitude is $a_R = v^2/r$. It is not surprising that this acceleration depends on v and r. The greater the speed v, the faster the velocity changes direction; and the larger the radius, the less rapidly the velocity changes direction.

FIGURE 5-2 Determining the change in velocity, $\Delta \vec{v}$, for a particle moving in a circle. The length Δl is the distance along the arc, from A to B.

constant, but the acceleration is not zero

Appendix A contains a review of geometry.