The astronauts in the upper left of this photo are working on the space shuttle. As they orbit the Earth-at a rather high speed-they experience apparent weightlessness. The Moon, in the background, also is orbiting the Earth at high speed. Both the Moon and the space shuttle move in nearly circular orbits, and each undergoes a centripetal acceleration. What keeps the Moon and the space shuttle (and its astronauts) from moving off in a straight line away from Earth? It is the force of gravity. Newton's law of universal gravitation states that all objects attract all other objects with a force proportional to their masses and inversely proportional to the square of the distance between them. CHAPTER 5 ## **Circular Motion; Gravitation** FIGURE 5-1 A small object moving in a circle, showing how the velocity changes. At each point, the instantaneous velocity is in a direction tangent to the circular path. n object moves in a straight line if the net force on it acts in the direction of motion, or the net force is zero. If the net force acts at an angle to the direction of motion at any moment, then the object moves in a curved path. An example of the latter is projectile motion, which we discussed in Chapter 3. Another important case is that of an object moving in a circle, such as a ball at the end of a string revolving around one's head, or the nearly circular motion of the Moon about the Earth. In this Chapter, we study the circular motion of objects, and how Newton's laws of motion apply. We also discuss how Newton conceived of another great law by applying the concepts of circular motion to the motion of the Moon and the planets. This is the law of universal gravitation, which was the capstone of Newton's analysis of the physical world. ## 5-1 Kinematics of Uniform Circular Motion An object that moves in a circle at constant speed v is said to experience uniform circular motion. The magnitude of the velocity remains constant in this case, but the direction of the velocity continuously changes as the object moves around the circle (Fig. 5–1). Because acceleration is defined as the rate of